Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction.

نویسندگان

  • Ludguier D Montejo
  • Jingfei Jia
  • Hyun K Kim
  • Uwe J Netz
  • Sabine Blaschke
  • Gerhard A Müller
  • Andreas H Hielscher
چکیده

This is the first part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT). An approach for extracting heuristic features from DOT images and a method for using these features to diagnose rheumatoid arthritis (RA) are presented. Feature extraction is the focus of Part 1, while the utility of five classification algorithms is evaluated in Part 2. The framework is validated on a set of 219 DOT images of proximal interphalangeal (PIP) joints. Overall, 594 features are extracted from the absorption and scattering images of each joint. Three major findings are deduced. First, DOT images of subjects with RA are statistically different (p<0.05) from images of subjects without RA for over 90% of the features investigated. Second, DOT images of subjects with RA that do not have detectable effusion, erosion, or synovitis (as determined by MRI and ultrasound) are statistically indistinguishable from DOT images of subjects with RA that do exhibit effusion, erosion, or synovitis. Thus, this subset of subjects may be diagnosed with RA from DOT images while they would go undetected by reviews of MRI or ultrasound images. Third, scattering coefficient images yield better one-dimensional classifiers. A total of three features yield a Youden index greater than 0.8. These findings suggest that DOT may be capable of distinguishing between PIP joints that are healthy and those affected by RA with or without effusion, erosion, or synovitis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification.

This is the second part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT) for diagnosing rheumatoid arthritis (RA). A comprehensive analysis of techniques for the classification of DOT images of proximal interphalangeal joints of subjects with and without RA is presented. A method for extracting heuristic features from DOT images was presente...

متن کامل

Evaluation of Fourier Transform Coefficients for The Diagnosis of Rheumatoid Arthritis From Diffuse Optical Tomography Images

We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0...

متن کامل

Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images

Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in f...

متن کامل

Classification of Idiopathic Interstitial Pneumonia CT Images using Convolutional-net with Sparse Feature Extractors

We propose a computer aided diagnosis (CAD) system for classification of idiopathic interstitial pneumonias (IIPs). High resolution computed tomography (HRCT) images are considered as effective for diagnosis of IIPs. Our proposed CAD system is based on the convolutionalnet that is bio-plausible neural network model inspired from the visual system such like human. The convolutional-net extract l...

متن کامل

A Survey on CAD System for Liver Cancer Diagnosis

-Hepatic cancer is the fifth most common cancer in the world and the majority of patients with liver cancer as a result will die within one year. Computer Aided Diagnosis (CAD) systems help a great deal in aiding the detection and diagnosis of cancer. They serve as an effective second opinion. Computed Tomography (CT) is one of the commonly used imaging modalities in the cancer domain since it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2013